Using PETSc Solvers in BOUT++

Lois Curfman Mclnnes, Hong Zhang and the PETSc Team

Mathematics and Computer Science Division
Argonne National Laboratory

BOUT++ Workshop
Livermore, CA

September 14-16, 2011

BOUT++ Application:
using SUNDIALS (LLNL) and PETSc (ANL)

N Current emphasis:

| BOUT++ :
| Userl___,_....... OUIT « Implicit time integration

Sl * Newton-Krylov nonlinear solves

[* Jacobian—free variant

SolverAPI * Preconditioner options:
» algebraic approaches using sparse finite
difference Jacobian evaluation via coloring
@ @ @ * or user-provided preconditioners
Implementation:

e solver type=cvode/ida/petsc
 PETSc variant has several options:
 PETSc calls PETSc/TS or
SUNDIALS/CVODE
- SUNDIALS/CVODE can call PETSc/PC

See upcoming presentations:
C. Woodward (SUNDIALS) and P. Narayan (performance analysis)

Newton s Method

Based on multivariate Taylor expansion:

F(ul+1) _ F(ul) + F!(ul)(ul+l _ ul)
+ higher order terms

F!(ul—l) 6ul _ _F(ul—l)

u' =u + A S

Newton
nonlinear solver

* (Can achieve quadratic convergence when sufficiently close to solution

* (Can extend radius of convergence with line search, trust region, or
continuation methods (e.g., pseudo-transient continuation, mesh sequencing)

3

Krylov Methods

* Projection methods for solving linear
systems, Ax=b, using the Krylov
subspace

K, = span(ry, Ar,, Arg,.. AR

* Require 4 only in the form of
matrix-vector products

« Popular methods include CG,
GMRES, TFQMR, BiCGStab, etc.

accelerator In practice, preconditioning typically
needed for good performance

Challenges 1n Preconditioning

* Cluster eigenvalues of the iteration matrix (and thus speed
convergence of Krylov methods) by transforming Ax=b into
an equivalent form:

B'Ax=B'bor (AB)'(Bx)=b
where the inverse action of B approximates that of 4, but at a
smaller cost

 How to choose B so that we achieve efficiency and
scalability? Common strategies include:
— Lagging the evaluation of B
— Lower order and/or sparse approximations of B

— Parallel techniques exploiting memory hierarchy, e.g., additive
Schwarz

— Multi-level methods
— User-defined custom physics-based approaches

The Need for Derivatives

F' (ul_l) (Sl/tl — —F(l/tl_l) <@ Solve approximately
using a preconditioned
Krylov method

« Newton-Krylov methods require derivatives in the form of
Jacobian-vector products, F (u)v

* Also typically require ' (u) (or a “cheaper” approximation)
for use in preconditioning
 Options: Can provide either F’(u) or F ' (u)v via
— Analytic code (written by application developer)
— Sparse finite difference approximation (FD) }

— Automatic differentiation (AD), see
www.autodiff.org

Can be provided
by libraries

Matrix-free Jacobian-Vector Products

 Approaches
— Finite differences (FD)
e F'(x)v=/[F(x+hv)-F(x)]/h
 costs approximately 1 function evaluation

 challenges in computing the differencing parameter, 4, must balance truncation and
round-off errors

— Automatic differentiation (AD)

 costs approx 2 function evaluations, no difficulties in parameter estimation
* e.g., ADIFOR & ADIC

 Advantages

— Newton-like convergence without the cost of computing and storing the true
Jacobian

— In practice, still typically perform preconditioning
* Reference

— D.A. Knoll and D.E. Keyes, Jacobian-free Newton-Krylov Methods: A
Survey of Approaches and Applications, 2004, J. Comp. Phys., 193: 357-397

Example: ~BOUT/examples/drift-instability
on a MacAir with 2.13 GHz Inel core 2 Duo and 2GB MHz DDR3 memory
mpiexec -n 4 ./2fluid solver type=petsc -ts type sundials -pc type <pc> [options]

Preconditioner NONE LU ASM+ BJACOBI
(MUMPS) LU/ILU +ILU

Internal time steps 1278 71 82/101 89
Calls to rhs function 2409 94 102/137 108
Linear solver setup 0 17 18/21 14
Error test failures 3 5 5/4 3
Nonlinear iterations 2408 93 101/136 107
Nonlinear convergence failure 554 0 0/3 1
Linear iterations 11591 77 165/348 298
Linear convergence failures 2061 0 0/23 3
Preconditioner evaluations 0 17 18/21 14
Preconditioner solves 0 153 257/475 398
Finite diff. Jacobian-vec product 11591 77 165/348 298
Run time 4m9s | 2m37s | 2m 11s/2m 19s 1m 30s ©

PETSc —

Portable Extensible Toolkit for Scientific computation

* High-performance software for the scalable (parallel) solution
of scientific applications

* PETSc History
* Begun in 1991
* Over 20,000 downloads since 1995 (version 2)
* Currently about 400 downloads per month
 PETSc Funding and Support
 primarily Department of Energy

* National Science Foundation

Portable Extensible Toolkit for Scientific computation

Portable to any parallel system supporting MPI

 Tightly coupled systems
* Cray XTS5, SGI Origin, IBM SP, HP 9000,...

* Loosely coupled systems
* PCs running Linux or Windows

Free for everyone, including industrial users.
Download from www.mcs.anl.gov/petsc
Extensive documentation

Hundreds of tutorial-style examples

Support via email: petsc-maint@mcs.anl.gov
Usable from Fortran90, C, C++, Python

10

Level of
Abstraction

Portable Extensible Toolkit for Scientific computation

Application Codes

11

Portable Extensible Toolkit for Scientific computation

 Parallel vector/array operations

 Numerous (parallel) sparse matrix formats

e Numerous linear solvers

* Nonlinear solvers

* ODE integrators

 Parallel grid/data management

e Provides common interface for
SUNDIALS/CVODE, hypre, SuperLU, MUMPS,...

* Allows switching of virtually all solvers at runtime

12

Portable Extensible Toolkit for Scientific computation

Interfaced Packages:

. LU, Cholesky, ILU, ICC
SuperLU/SuperLU_DIST, MATLAB, PLAPACK, UMFPACK, MUMPS

. Algebraic multigrid

BoomerAMG (part of hypre), ML (part of Trilinos)
. Parititioning: Parmetis, Chaco, Jostle, Party, Scotch
. ODE integrators: Sundials/CVODE
. Eigenvalue solvers: BLOPEX
. FFTW
. SPRN

Child Packages of PETSc: Have PETSc’ s style of programming

. SLEPc: scalable eigenvalue/eigenvector solver packages
. TAOQO: scalable numerical optimization algorithms

13

Portable Extensible Toolkit for Scientific computation

Solvers, (parallel) debugging aids, low-overhead profiling

It 1s not possible to select the most effective solver a priori

— What will deliver best/competitive performance for a given physics,
problem size, discretization, and architecture?

« PETSc was developed as a platform for experimentation
— models, discretization, algorithms, solvers

— algebra of composition so new solvers can be created at runtime

« Important to keep solvers decoupled from physics,
discretization and processor partitioning because we also
experiment with those

14

Portable Extensible Toolkit for Scientific computation

Who Uses PETSc?

e Computational Scientists
— PyLith (TECTON), Underworld, Columbia group, PFLOTRAN, etc.

* Algorithm Developers

— Iterative methods and preconditioning researchers

* Package Developers
— SLEPc, TAO, MagPar, StGermain, Dealll, PETSc-FEM

15

Portable Extensible Toolkit for Scientific computation

Applications of PETSc: (see more at www.mcs.anl.gov)

e Nano-simulations

* Biology/Medical

e Cardiology

e Imaging and Surgery

* Fusion

* Geosciences

e Environmental/Subsurface Flow
e Computational Fluid Dynamics
e Wave propagation and the Helmholz equation
e Optimization

e Software engineering

e Algorithm analysis and design

16

What Can We Handle?

« PETSc has run implicit problems with over 500 billion unknowns
« PFLOTRAN (flow in porous media)
* UNIC (nuclear energy) on BG/P and XT5

* PETSc has run on over 290,000 cores efficiently
« UNIC on IBM BG/P Intrepid at ANL
* PFLOTRAN on the Cray XT5 Jaguar at ORNL

« PETSc applications have run at 22 Teraflops
* PFLOTRAN
« UNIC

* PETSc also runs on your laptop

Outline

e Overview of PETSc user interface:

— Linear solvers: KSP
— Nonlinear solvers: SNES

— ODE solvers: TS
— Profiling and debugging

« What s New in PETSc

18

The PETSc Programming Model

e Distributed memory, “shared-nothing
* Requires only a standard compiler
» Access to data on remote machines through MPI

» Hide within objects the details of the
communication

« User orchestrates communication at a higher
abstract level than direct MPI calls

19

Getting Started

Petsclnitialize();
ObjCreate(MPI_comm,&obj);
ObjSetType(oby,);
ObjSetFromOptions(obj,);

ObjSolve(oby,);
ObjGetxxx(obj,);

ObjDestroy(obj);
PetscFinalize();

20

PETSc Numerical Components

Nonlinear Solvers (SNES) Time Steppers (TS)
Newton-based Methods Theta, -
Others REKulggP Alpha, Psg:&c}l)c;){l“;g “l Others
Line Search | Trust Region ’ GL
Krylov Subspace Methods (KSP)
GMRES CG CGS | Bi-CG-STAB | TFQMR | Richardson | Chebychev | Others
Preconditioners (PC)
gdditive | Block Shell | ILU,LU MG Field Split | Others
Matrices (Mat)
Compressed | Blocked Compressed Block
Sparse Row Sparse Row Diagonal Dense Matrix-free | Others
(AL) (BALJ) (BDIAG)
Distributed Arrays (DA) Index Sets (IS)
Indices Block Indices Stride Others

Vectors (Vec)

21

Linear Solver Interface: KSP

P Y
Linear Solvers (KSP)

PC

’ User code <> PETSc code

22

Setting Solver Options at Runtime

-ksp_type [cg,gmres,bcgs,tfigmr,...]
-pc_type [lu,ilu,jacobi,sor,asm,...]

-ksp_max_it <max_iters>
-ksp_gmres_restart <restart>
-pc_asm_overlap <overlap>

-pc_asm_type [basic,restrict,interpolate,none]
etc ...

23

Recursion: Specifying Solvers for Schwarz
Preconditioner Blocks

 Specify KSP solvers and options with “-sub” prefix,
e.g.,
— Full or incomplete factorization
-sub_pc_type Iu
-sub_pc_type ilu -sub_pc_ilu_levels <levels>
— Can also use 1nner Krylov iterations, e.g.,
-sub_ksp_type gmres -sub_ksp_rtol <rtol>
-sub_ksp_max_it <maxit>

24

Flow of Control for PETSc Solvers

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

PC

’ User code ’ PETSc code

25

Nonlinear Solver Interface: SNES

Goal: For problems arising from PDEs,
support the general solution of F(u) =0

User provides:
— Code to evaluate F(u)

— Code to evaluate Jacobian of F(u) (optional)
* or use sparse finite difference approximation

 or use automatic differentiation
— AD support: automated interface to ADIFOR and ADIC
— See www.mcs.anl.gov/autodiff

26

SNES: Basic Usage

SNESCreate()
SNESSetFunction()
SNESSetJacobian()

SNESSetFromOptions()

SNESSolve()
SNESView()

SNESDestroy()

- Create SNES context
- Set function eval. routine
- Set Jacobian eval. routine

- Set runtime solver options
for [SNES, KSP,PC]

- Run nonlinear solver

- View solver options
actually used at runtime
(alternative: -snes_view)

- Destroy solver

27

ODE Solver Interface: TS

ODE: du/dt=F(u,t) or
DAE: G(u, du/dt, t) = F(u, t)

User provides:
— Code to evaluate function

— Code to evaluate Jacobian (optional)
* or use sparse finite difference approximation

28

TS: Basic Usage

TSCreate()

TSSetProblemType()

TSSetType()

TSSetRHSFunction() and/or TSSetlFunction()
TSSetRHSJacobian() or TSSetlJacobian()
TSSetlnitial TimeStep()

TSSetDuration()

TSSetFromOptions()

TSSolve() - Time stepping
TSView()
TSDestroy()

29

Uniform Access to All PETSc Solvers

« -ksp_type [cg, gmres, bcgs, tigmr,...]
* -pc_type [lu, ilu, jacobi, sor, asm,...]
 -ksp_monitor_true_residual

« -ksp_converged_reason

« -snes_type [Is,...]

« -sles_Is <parameters>

« -snes_rtol <> -snes_atol <> -snes_stol <>
* -snes_monitor
 -snes_converged_reason

« -ts_type [sundials, theta, beuler...]
« -ts_theta_[option]

o -ts_dt <>-ts_max_time <>

« -ts_view

30

Uniform Access to External Solvers

mpiexec —n <np> ./petsc_program [petsc options]
* -ts_type sundials

* -ts_sundials_type [adams, bdf]

» -ts_sundials_linear_tolerance <tolerance>

* -ts_sundials_monitor_steps

* -pc_type lu

* -pc_factor_mat_solver_package superlu_dist
 -mat_superlu_dist_[option]

mpiexec —n <np> ./slepc_program [slepc/petsc options]
* -eps_type [power, arnoldi, lapack, blopex,...]

* -eps_nev <>-eps_ncv <> -eps_ smallest_magnitute

« -st_type [shift, sinvert,...] —st_shift <> -st_ksp_type <>
Reference: http://www.grycap.upv.es/slepc

31

PETSc Programming Aids

* Correctness Debugging
— Automatic generation of tracebacks
— Detecting memory corruption and leaks
— Optional user-defined error handlers

* Performance Profiling
— Integrated profiling using -log_summary
— Profiling by stages of an application

— User-defined events

32

What' s New in PETSc?

User-friendly APIs
— Python Bindings: petscdpy (Dalcin at CIMEC), Elefant (SML group at NICTA)
— PETSc-MATLAB

Architecture—aware numerical algorithms and implementations
— Optimization for GPUs
http://www.mcs.anl.gov/petsc/petsc-as/features/gpus.html
— Hybrid MPI + pthreads
http://www.mcs.anl.gov/petsc/petsc-as/features/threads.html

— New algorithms and implementations that address memory scalability,
efficient data accessing, e.g., iBICGStab

Variational inequality solvers
— SNESSetType(VI1), SNESVISetVariableBounds(), ...

Mathematical solvers for multiphysics
— PCFieldSplit: support for physics-based preconditioning

Time integration, DAE (operator spliting G(u, du/dt, t) = F(u, §))

PETSc Solvers for Multiphysics:

Exploiting physics knowledge in custom preconditioners ...
New PCFieldSplit simplifies multi-model algebraic system specification and solution.

prec['7']=["'-pc_type fieldsplit', '-pc_fieldsplit_block_size 5',
UEDGE runtime option; '—pc_fieldsplit_type additive','-pc_fieldsplit_@_fields 0,1,2,3
', '-pc_fieldsplit_1_fields 4',6'-fieldsplit_0_pc_type asm','-fie
ldsplit_@_sub_pc_type W', '-fieldsplit_0@_sub_pc_factor_mat_solv
er_package mumps','-fieldsplit_1_pc_type lu','-fieldsplit_1_pc_
factor_mat_solver_package mumps']

Al Non-neutral terms only

@, "t 4, A‘ 142
: .o — A2 Neutral to Non-neutral

a, - a, physics-based A A,
: - /. Non-neutral to neutral
base ordering (all reordering components 3
variables per mesh point) (for PC only) are separated A A Neutral terms only

Leveraging knowledge of the different component physics in the system produces a
better preconditioner.

4_ ! ‘ A—l Additive Schwarz, Additive Schwarz
1 1 LU on blocks ‘ provides scalability
A, ~ 1 Full LU solve
- u \Y
additive componentwise A4 via MUMPS ‘ LU handles the

preconditioner neutrals only

34

Physics-based Preconditioning in UEDGE

Scalable Preconditioners for Coupled
Plasma/Neutral Boundary Transport Simulations
Michael McCourt'-?, Tom Rognlien®, Lois Curfman Mclnnes?, Hong Zhang?

Cornell University, 2Argonne National Laboratory, 3Lawrence Livermore National Laboratory

Motivating a Physics Preconditioner Results: Scalability for More Complex Problems
Physics issues to consider for computational stability/accuracy/efficiency: o FieldSplit performs well for larger time steps, so long as the plasma
@ Solving plasma and neutral equations on the same mesh terms can still be solved scalably.
simplifies their strong coupling; this is helpful to ensure an g S it 103 ; 20 g5 it e
accurate simulation.
o Wall particle recycling and ionization can result in long physical times to
reach equilibrium; this competes with the fast edge plasma transport.
@ To accommodate the dominant plasma transport, the
discretization is highly anisotropic. {
o For standard At the plasma terms are well-conditioned enough to use an Ragial width

Office of Science
U.S. Department of Energy

Introduction
@ We study simulations of the
edge region of a Tokamak
magnetic confinement fusion
reactor using UEDGE.
o UEDGE is a 2D parallel edge
plasma application developed by T.
Rognlien et al. (LLNL)

@ UEDGE is one of the edge plasma transport
components in FACETS.
o FACETS: Framework Application for Core-Edge Transport

Si Ny N easily scalable preconditioner such as Additive Schwarz. is much T s T

imulations based at Tech-X Corporation L ! X L . Pracessar nodes Pracessar nodes used - Precondioner

Pl: John Cary, https://www.facetsproject.org o However, neutral collisional diffusive transport is isotropic, and greaterinan | g iy the neutral D velocity was computed with a simpler algebraic

@ FACETS goal: Strong coupling between core, edge and wall very ill-conditioned on an anisotropic mesh. P model. Below are results with its inclusion in the nonlinear solve.
Tokamak regions during simulation This physical knowledge implies that separate methods should be used to A 2D partitioning is preferred for this problem, which is first available at NP=8.

precondition the plasma and neutral terms within the nonlinear solver.

Governing Physics

UEDGE uses a fluid transport model, conserving Designing a Physics Preconditioner: FieldSplit
articles, momentum and energy. 1D radial partition e O = i iti
p . . 4 gy7 . Additive Schwarz Preconditioner Sample grid FieldSplit Precond'tloner
o Simulations use At € [1074,10-%] sec, Competing Field A mm Al Plasma Different preconditioners may be used :
5 FieldB == Neutral densit for each component in FieldSplit:
appropnate for coupllng to Time Scales Only m;pl";g “"‘"m" 2 partition '; Field C Neutral veloci(yy Algebraic Multigrid 5
H tail A titi it
time-dependant core models. wal e evecondoned smilarty 2555 Raditve Schwarz Ry]]
@ Coupled plas;na/ne_ultral smulatlonls |nv|olve a foolution o pornt coupling within Felds :] i - - [
o S:\r/geer;ngoeuo Izza‘\'laar?gglt:;“m:‘r ;(C:? i?the and C are Ignored becatsse fthel " : @ We also enjoy improved performance in the presence of a Neon
basic simuleﬁion: Plasma _Tro" L 1 impurity and the 11 new individual fields added as a result.
S Evolution | o e s g 215w e
o Deuterium ion D density T0?
@ Deuterium ion D* parallel velocity Field Agenerally hasmany | [mmsmmemment
o Electron e temperature lon To® foverlaps variables and is weakly | i
o Neutral Deuterium D density Transit R coupled poloidally. L1 77 :
@ Strong nonlinearities can yield Heat , increased| || Fields B and Care coupled "
ill-conditioned simulations Diffusior passing throughout the domain Rliris st complement " ‘
. . . S ot 0’ 4 &F5 BLU BFS LU 16FS
@ Impurities in the plasma arise from: ; N S [E—— Prcessor e e oo
o Plasma sputtering of material walls, and Results: FIe'dSp'lt Precondltlonlng ©C lusi Future Work
o Edge transport competing with ionization/recombination. e Initial FieldSplit structure - 2 separate fields preconditioned individually: .OnC USIOHS . o As different species (e.g., He and
@ Solving each charge state (or bundle) creates large systems. oField 1: 4 plasma terms solved with Additive Schwarz o FieldSplit overcomes a major p -9
ald 2 :) o obstacle to parallel scalability for C) are added and larger At used,
A| th o Field 2: 1 neutral term solved with Algebraic Multigrid an implicit coupled neutral/plasma how can FieldSplit be optimized?
- w ?
QQU . mS_ o . i i @ Component preconditioners are added together edge model oTh lof th ’F):ACETg et
o Implicit time discretization with nonlinear solves via @ Coupling terms between fields are disregarded during preconditioning This allows greatly reduced runti Sl N s (O (AT
preconditioned Jacobian-free Newton-Krylov :] Wh':naug‘i';: ?]: iiiglefep rggzssfgrns imes Cgre—Edgﬁ-Wﬁll coupling)

. " o o - L g swin 56012 g 8 s, 1ok b @ How can this physics preconditioning
sTheSchqlce of precondltl(()jner |sr\]/|tal lto a(:hle'vmg. scalabllllltyI L} o Little code manipulation is required. be applied in a multiphysics setting?
OEET B U.SEd t? COI;] ucgtl. e.?”gu atllorgllllj} [EIENE O @ Jacobian-free Newton-Krylov @ What techniques developed here can

o Early experiments showed limited scalability «SP its Time (sec) within PETSc using FieldSplit be used in 3D edge codes, e.g.,

eThe d_lrec_t solver becomes overwhelrr_1ed _by the cost of LU ALsUM 15755 125? preconditioning provides flexibility BOUT++?
factorizationjandiassociatedicommunicafion Fs |4 1o for optimizations such as @ Coupling terms can be retained
— o T == @ Redundant preconditioning on via the Schur complement.
= o'k ; _ . comparatively small fields, o Cost is greater than Additive FieldSplit.
- v Fucessornoe. T cesnr s e Pt @ Variable Additive Schwarz overlap, and| @ While not needed so far, will this
N [@By handling the troublesome fields (neutral gases) separately we can use a | Jacobian lagging both within and coupling be useful in multiphysics
across time steps. preconditioning?

more scalable solver on the easier fields (plasma).
@ 1D partitioning allows for the majority of fields (plasma) to be on their more Acknowledgements
optimal domain. Special thanks to Charles Van Loan, Satish Balay, and Barry Smijth,_

MAIL: mccomic@mcs.anl.gov ICNSP 2011, Long Branch, NJ September 8, Poster Session SR

\.

Conclusions

PETSc can help you

« Easily construct a code to test your 1deas
— tools to aid code construction, management, debugging

« Scale an existing code to large or distributed machines

* Incorporate more scalable or higher performance algorithms
— such as domain decomposition or multigrid

e Tune your code to new architectures
— using profiling tools and specialized implementations

36

How Can We Help?

Provide documentation:
— http://www.mcs.anl.gov/petsc

Quickly answer questions

Assist with 1nstallation

Guide large-scale flexible code development
Answer email at petsc-maint@mcs.anl.gov

37

